A total lunar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 3, 1942, with an umbral magnitude of 1.5612. It was a central lunar eclipse, in which part of the Moon passed through the center of the Earth's shadow. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 5.5 days before perigee (on March 8, 1942, at 11:50 UTC), the Moon's apparent diameter was larger.

Visibility

The eclipse was completely visible over eastern South America, Africa, Europe, and the Middle East, seen rising over North America and west and central South America and setting over much of Asia and western Australia.

Eclipse details

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Related eclipses

Eclipses in 1942

  • A total lunar eclipse on March 3.
  • A partial solar eclipse on March 16.
  • A partial solar eclipse on August 12.
  • A total lunar eclipse on August 26.
  • A partial solar eclipse on September 10.

Metonic

  • Preceded by: Lunar eclipse of May 14, 1938
  • Followed by: Lunar eclipse of December 19, 1945

Tzolkinex

  • Preceded by: Lunar eclipse of January 19, 1935
  • Followed by: Lunar eclipse of April 13, 1949

Half-Saros

  • Preceded by: Solar eclipse of February 24, 1933
  • Followed by: Solar eclipse of March 7, 1951

Tritos

  • Preceded by: Lunar eclipse of April 2, 1931
  • Followed by: Lunar eclipse of January 29, 1953

Lunar Saros 122

  • Preceded by: Lunar eclipse of February 20, 1924
  • Followed by: Lunar eclipse of March 13, 1960

Inex

  • Preceded by: Lunar eclipse of March 22, 1913
  • Followed by: Lunar eclipse of February 10, 1971

Triad

  • Preceded by: Lunar eclipse of May 2, 1855
  • Followed by: Lunar eclipse of December 31, 2028

Lunar eclipses of 1940–1944

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.

The penumbral lunar eclipses on April 22, 1940 and October 16, 1940 occur in the previous lunar year eclipse set, and the penumbral lunar eclipses on July 6, 1944 and December 29, 1944 occur in the next lunar year eclipse set.

Saros 122

This eclipse is a part of Saros series 122, repeating every 18 years, 11 days, and containing 74 events. The series started with a penumbral lunar eclipse on August 14, 1022. It contains partial eclipses from April 10, 1419 through June 24, 1545; total eclipses from July 5, 1563 through May 6, 2050; and a second set of partial eclipses from May 17, 2068 through July 21, 2176. The series ends at member 74 as a penumbral eclipse on October 29, 2338.

The longest duration of totality was produced by member 39 at 100 minutes, 5 seconds on October 11, 1707. All eclipses in this series occur at the Moon’s ascending node of orbit.

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Half-Saros cycle

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros). This lunar eclipse is related to two total solar eclipses of Solar Saros 129.

See also

  • List of lunar eclipses and List of 21st-century lunar eclipses

References

External links

  • Saros series 122
  • 1942 Mar 03 chart Eclipse Predictions by Fred Espenak, NASA/GSFC

Total Lunar Eclipse on Feb 20, 1924 Map & Times

August 1942 lunar eclipse Alchetron, the free social encyclopedia

Lunar Eclipse March 2024 Astrology Berna Stoddard

194210 Solar and Lunar Eclipse poster, mounted DenoyerGeppert

Full Moon/Lunar Eclipse on March 14, 2025 Cafe Astrology